Search on StockPrognosis.com
To search on the site stockprognosis.com enter the name of the ticker, company name, or search phrase
Sections of the site

Diversification by forecast parameters

Beyond Asset Classes: Parameter-Based Diversification

QuantWave's multi-dimensional forecasting system enables sophisticated diversification across signal characteristics, not just traditional asset classes.

Key Diversification Dimensions

1. Time Horizon Diversification

  • Short-Term (1-5 days): 20-30% of portfolio
  • Medium-Term (1-4 weeks): 40-50% of portfolio
  • Long-Term (1-6 months): 20-30% of portfolio

2. Probability Distribution

Confidence Band Suggested Weight Position Sizing
High (75%+) 40-50% Full size
Medium (60-74%) 30-40% Reduced size
Low (50-59%) 10-20% Minimum size

Advanced Parameter Diversification

1. Strategy Type Mix

  • Trend Following: 40-60%
  • Mean Reversion: 20-30%
  • Event-Driven: 10-20%
  • Arbitrage: 0-10%

2. Risk Profile Balance

  • Low Risk: Core positions (50-60%)
  • Medium Risk: Strategic positions (30-40%)
  • High Risk: Opportunistic (10-20%)

QuantWave Diversification Tools

1. Parameter Matrix

  • Visual mapping of forecast characteristics
  • Identifies concentration risks
  • Suggests balancing opportunities

2. Correlation Analyzer

  • Measures strategy interdependence
  • Tests portfolio stress scenarios
  • Optimizes parameter combinations

Implementation Framework

The 5-Step Parameter Balance

  1. Analyze current parameter distribution
  2. Identify over-concentrated dimensions
  3. Select complementary forecasts
  4. Adjust position sizing accordingly
  5. Monitor correlation effects

Common Mistakes

  • Overloading one probability band
  • Ignoring strategy correlations
  • Mismatching time horizons
  • Over-optimizing parameter sets

Performance Metrics

  • Parameter contribution analysis
  • Strategy correlation impact
  • Drawdown by parameter group

QuantWave's parameter-based diversification provides a sophisticated approach to building robust portfolios. By systematically balancing across multiple forecast dimensions, investors can achieve more stable returns regardless of market conditions.