Stocks-Prognosis.com
Search on StockPrognosis.com
To search on the site stockprognosis.com enter the name of the ticker, company name, or search phrase
Sections of the site




QuantSchool: Diversification by forecast parameters


Beyond Asset Classes: Parameter-Based Diversification

QuantWave's multi-dimensional forecasting system enables sophisticated diversification across signal characteristics, not just traditional asset classes.

Key Diversification Dimensions

1. Time Horizon Diversification

  • Short-Term (1-5 days): 20-30% of portfolio
  • Medium-Term (1-4 weeks): 40-50% of portfolio
  • Long-Term (1-6 months): 20-30% of portfolio

2. Probability Distribution

Confidence Band Suggested Weight Position Sizing
High (75%+) 40-50% Full size
Medium (60-74%) 30-40% Reduced size
Low (50-59%) 10-20% Minimum size

Advanced Parameter Diversification

1. Strategy Type Mix

  • Trend Following: 40-60%
  • Mean Reversion: 20-30%
  • Event-Driven: 10-20%
  • Arbitrage: 0-10%

2. Risk Profile Balance

  • Low Risk: Core positions (50-60%)
  • Medium Risk: Strategic positions (30-40%)
  • High Risk: Opportunistic (10-20%)

QuantWave Diversification Tools

1. Parameter Matrix

  • Visual mapping of forecast characteristics
  • Identifies concentration risks
  • Suggests balancing opportunities

2. Correlation Analyzer

  • Measures strategy interdependence
  • Tests portfolio stress scenarios
  • Optimizes parameter combinations

Implementation Framework

The 5-Step Parameter Balance

  1. Analyze current parameter distribution
  2. Identify over-concentrated dimensions
  3. Select complementary forecasts
  4. Adjust position sizing accordingly
  5. Monitor correlation effects

Common Mistakes

  • Overloading one probability band
  • Ignoring strategy correlations
  • Mismatching time horizons
  • Over-optimizing parameter sets

Performance Metrics

  • Parameter contribution analysis
  • Strategy correlation impact
  • Drawdown by parameter group

QuantWave's parameter-based diversification provides a sophisticated approach to building robust portfolios. By systematically balancing across multiple forecast dimensions, investors can achieve more stable returns regardless of market conditions.